Closing Wed: HW_2A, 2B, 2C We will start chapter 6 on Monday, read ahead through sections 6.1-6.3.

5.5 The Substitution Rule

Entry Task (Motivation):

1. Find the following derivatives

Function	Derivative?
$\cos(x^2)$	
$\sin(x^4)$	
$e^{tan(x)}$	
$(\ln(x))^3$	
$\ln(x^4+1)$	

2. Rewrite as integrals:

$$\int dx = \cos(x^{2}) + C$$

$$\int dx = \sin(x^{4}) + C$$

$$\int dx = e^{\tan(x)} + C$$

$$\int dx = (\ln(x))^{3} + C$$

$$\int dx = \ln(x^{4} + 1) + C$$

3. Guess and check the answer to:

$$\int 7x^6 \sin(x^7) \, dx =$$

Observations:

- 1. We are reversing the "chain rule".
- 2. In each case, we see"inside" = a function inside another"outside" = derivative of insideTo help us mechanically see theseconnections, we use what we call:

The Substitution Rule:

If we write u = g(x) and du = g'(x) dx, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Aside (you do not need to write this)

Some theory

Recall:

$$\int_{a}^{b} f(g(x))g'(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(g(x_{i}))g'(x_{i})\Delta x$$

If we replace u = g(x), then we are "transforming" the problem from one involving x and y to one with u and y.

This changes *everything* in the set up. The lower bound, the upper bound, the width, and the integrand!

Recall from Math 124 that

$$g'(x) = \frac{du}{dx} \approx \frac{\Delta u}{\Delta x}$$

(with more accuracy when Δx is small) Thus, we can say that

$$g'(x)\Delta x \approx \Delta u$$

In other words, if the width of the rectangles using x and y is Δx , then the width of the rectangles using u and y is $g'(x)\Delta x$.

And if we write $u_i = g(x_i)$, then

$$\int_{a}^{b} f(g(x))g'(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(g(x_{i}))g'(x_{i})\Delta x$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(u)\Delta u$$

$$= \int_{g(a)}^{g(b)} f(u)du$$

Here is a visual example of this transformation





